

Studying the Diffuse Gamma-Ray Emission from the Cygnus Region with HAWC and Fermi

Hugo Ayala

Galactic Diffuse Gamma-Ray Emission

- Diffuse gamma-ray emission is produced by the interaction of cosmic rays with radiation fields(CMBR) and interstellar matter in the galaxy
- Physical processes
 - Nuclei collision $\Rightarrow \pi^{\circ} \Rightarrow \gamma$

Inverse Compton Scattering

Bremsstrahlung

2

Galactic Diffuse Gamma-Ray Emission

- Diffuse gamma-ray emission probes the acceleration and propagation of cosmic rays.
- Each process has a characteristic spectrum that we can analyze

Sinnis, G. 2010 The Origin of the Galactic Cosmic Radiation 3

Motivation

- The diffuse emission at TeV energies is unique since it traces the transitional energy regime between 'sea' and freshly released Cosmic Rays
- The detection of extended/diffuse gamma-ray emission at close to 100 TeV near acceleration sites would be a sign of cosmic-ray acceleration up to 10^15 eV in galactic sources
- TeV sky appears to show more small scale structures than the sky at MeV-GeV energy (except the Fermi Bubbles)

4

Cygnus Region

 Flux measurement by Milagro obtained from 8 years of data

Blue: Total predicted flux

Red: Pion Contribution

Green: Inverse Compton Contribution

Blue: Bremsstrahlung

Sinnis, G. 2010 The Origin of the Galactic Cosmic Radiation

HAWC

- High Altitude Water Cherenkov Detector
- Being built in Mexico at 4100 mts. a.s.l
- Energy range I00GeV to I00TeV
- Area of 20000m^2
- Each WCD has 4 Photomultiplier tubes to detect Cherenkov light

Angular Resolution

8

Sensitivity to Diffuse Gamma-Ray Emission

Cygnus Region: What is next?

Blue: Total predicted flux

Red: Pion Contribution

Green: Inverse Compton Contribution

Blue: Bremsstrahlung

Sinnis, G. 2010 The Origin of the Galactic Cosmic Radiation

Cygnus Region: What is next?

Blue: Total predicted flux

Red: Pion Contribution

Green: Inverse Compton Contribution

Blue: Bremsstrahlung

II Sinnis, G. 2010 The Origin of the Galactic Cosmic Radiation

Some preliminary work

• One year simulation of the Diffuse Gamma-Ray Emission.

Binsize = 0.44°

Summary

- HAWC is a ground-based gamma-ray detector that will study the galactic diffuse gamma-ray emission with unprecedented sensitivity
- **HAWC** will be able to study large extended sources and to probe the propagation and acceleration of high energy cosmic rays close to the accelerator sources.
- HAWC will be able to describe the Cygnus Region better than its predecessor Milagro.

Back-up

15

18

Detector Sensitivity

Ackermann, M. 2012 Astrophys. J. 750 3